Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Nat Commun ; 15(1): 1878, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499523

ABSTRACT

The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/ß-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.


Subject(s)
Endothelial Cells , Liver , Swine , Animals , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Hepatocytes/metabolism , Signal Transduction , Insulin/metabolism
2.
Nat Commun ; 14(1): 6213, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813842

ABSTRACT

Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.


Subject(s)
Epithelial Cells , Stem Cells , Pregnancy , Female , Animals , Epithelial Cells/metabolism , Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Signal Transduction , Mammary Glands, Animal/metabolism
3.
Breast Cancer Res ; 25(1): 91, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542268

ABSTRACT

A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Mice , Animals , Female , MicroRNAs/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Cell Differentiation/genetics , Cell Proliferation/genetics , Neoplastic Stem Cells/pathology
4.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37432984

ABSTRACT

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Biomarkers , Cell Line, Tumor , Endoglin/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
5.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36519825

ABSTRACT

MOTIVATION: Transposable elements (TE) have played a major role in configuring the structures of mammalian genomes through evolution. In normal conditions, the expression of these elements is repressed by different epigenetic regulation mechanisms such as DNA methylation, histone modification and regulation by small RNAs. TE re-activation is associated with stemness potential acquisition, regulation of innate immunity and disease, such as cancer. However, the vast majority of current knowledge in the field is based on bulk expression studies, and very little is known on cell-type- or state-specific expression of TE-derived transcripts. Therefore, cost-efficient single-cell-resolution TE expression analytical approaches are needed. RESULTS: We have implemented an analytical approach based on pseudoalignment to consensus sequences to incorporate TE expression information to scRNAseq data. AVAILABILITY AND IMPLEMENTATION: All the data and code implemented are available as Supplementary data and in: https://github.com/jmzvillarreal/kallisto_TE_scRNAseq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Transposable Elements , Epigenesis, Genetic , Animals , Single-Cell Gene Expression Analysis , Exome Sequencing , RNA , Mammals/genetics
6.
J Cancer Res Clin Oncol ; 149(6): 2367-2374, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35727371

ABSTRACT

BACKGROUND: Remnant gastric cancer (RGC) is defined as a carcinoma that develops in the gastric remnant from 5 years after gastrectomy, regardless of the primary gastric disease. The pattern of lymph node dissemination in these patients is not well understood. The present study aims to understand the lymph node distribution of patients with RGC in a single center. METHODS: In a total of 1380 patients with gastric cancer, between 1998 and 2020, 43 patients operated on for RGC were analyzed. The pattern of lymph node dissemination was evaluated based on the number of dissected lymph node stations, the number of positive lymph node stations, the positivity index at each analyzed station, the number of dissected lymph nodes per patient, and the positivity index per lymph node station. RESULTS: A mean of 13.0 ± 8.1 lymph nodes were dissected. The incidence of lymph node involvement by dissected station was higher at Stations 19, 11p, 3, 4sb and 7 (50, 40, 37.5, 36 and 31.7%, respectively). Among the positive dissected stations, Station 3 with 52.2%, 4sb with 39.1% and 4sa with 34.8% were the most affected. CONCLUSION: There was no predilection for lymph node involvement when comparing the lesser and greater gastric curvature. The dissection of Stations 3, 4sb and 4sa is fundamental in surgical treatment with curative purposes. The totalization of gastrectomy with lymphadenectomy of the perigastric and supra-pancreatic stations should be the surgery of choice.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Lymphatic Metastasis/pathology , Lymph Nodes/surgery , Lymph Nodes/pathology , Lymph Node Excision , Gastrectomy , Retrospective Studies
7.
EMBO J ; 42(1): e111251, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36326833

ABSTRACT

Maintenance of stemness is tightly linked to cell cycle regulation through protein phosphorylation by cyclin-dependent kinases (CDKs). However, how this process is reversed during differentiation is unknown. We report here that exit from stemness and differentiation of pluripotent cells along the neural lineage are controlled by CDC14, a CDK-counteracting phosphatase whose function in mammals remains obscure. Lack of the two CDC14 family members, CDC14A and CDC14B, results in deficient development of the neural system in the mouse and impairs neural differentiation from embryonic stem cells (ESCs). Mechanistically, CDC14 directly dephosphorylates specific proline-directed Ser/Thr residues of undifferentiated embryonic transcription Factor 1 (UTF1) during the exit from stemness, triggering its proteasome-dependent degradation. Multiomic single-cell analysis of transcription and chromatin accessibility in differentiating ESCs suggests that increased UTF1 levels in the absence of CDC14 prevent the proper firing of bivalent promoters required for differentiation. CDC14 phosphatases are dispensable for mitotic exit, suggesting that CDC14 phosphatases have evolved to control stemness rather than cell cycle exit and establish the CDK-CDC14 axis as a critical molecular switch for linking cell cycle regulation and self-renewal.


Subject(s)
Cell Cycle Proteins , Saccharomyces cerevisiae Proteins , Animals , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Cyclin-Dependent Kinases/metabolism , Cell Cycle , Phosphorylation/physiology , Mitosis , Saccharomyces cerevisiae Proteins/metabolism , Mammals
8.
Nucleic Acids Res ; 50(21): 12149-12165, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36453993

ABSTRACT

In mammalian cells, chromosomal replication starts at thousands of origins at which replisomes are assembled. Replicative stress triggers additional initiation events from 'dormant' origins whose genomic distribution and regulation are not well understood. In this study, we have analyzed origin activity in mouse embryonic stem cells in the absence or presence of mild replicative stress induced by aphidicolin, a DNA polymerase inhibitor, or by deregulation of origin licensing factor CDC6. In both cases, we observe that the majority of stress-responsive origins are also active in a small fraction of the cell population in a normal S phase, and stress increases their frequency of activation. In a search for the molecular determinants of origin efficiency, we compared the genetic and epigenetic features of origins displaying different levels of activation, and integrated their genomic positions in three-dimensional chromatin interaction networks derived from high-depth Hi-C and promoter-capture Hi-C data. We report that origin efficiency is directly proportional to the proximity to transcriptional start sites and to the number of contacts established between origin-containing chromatin fragments, supporting the organization of origins in higher-level DNA replication factories.


Subject(s)
Chromatin , Replication Origin , Animals , Mice , Replication Origin/genetics , Chromatin/genetics , Mouse Embryonic Stem Cells/metabolism , DNA Replication/genetics , Cell Cycle Proteins/metabolism , Mammals/genetics
9.
Genome Biol ; 23(1): 230, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316722

ABSTRACT

BACKGROUND: Overweight and obesity are defined by an anomalous or excessive fat accumulation that may compromise health. To find single-nucleotide polymorphisms (SNPs) influencing metabolic phenotypes associated with the obesity state, we analyze multiple anthropometric and clinical parameters in a cohort of 790 healthy volunteers and study potential associations with 48 manually curated SNPs, in metabolic genes functionally associated with the mechanistic target of rapamycin (mTOR) pathway. RESULTS: We identify and validate rs2291007 within a conserved region in the 3'UTR of folliculin-interacting protein FNIP2 that correlates with multiple leanness parameters. The T-to-C variant represents the major allele in Europeans and disrupts an ancestral target sequence of the miRNA miR-181b-5p, thus resulting in increased FNIP2 mRNA levels in cancer cell lines and in peripheral blood from carriers of the C allele. Because the miRNA binding site is conserved across vertebrates, we engineered the T-to-C substitution in the endogenous Fnip2 allele in mice. Primary cells derived from Fnip2 C/C mice show increased mRNA stability, and more importantly, Fnip2 C/C mice replicate the decreased adiposity and increased leanness observed in human volunteers. Finally, expression levels of FNIP2 in both human samples and mice negatively associate with leanness parameters, and moreover, are the most important contributor in a multifactorial model of body mass index prediction. CONCLUSIONS: We propose that rs2291007 influences human leanness through an evolutionarily conserved modulation of FNIP2 mRNA levels.


Subject(s)
MicroRNAs , Overweight , Humans , Animals , Mice , 3' Untranslated Regions , Overweight/genetics , Thinness/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Obesity/genetics , Carrier Proteins/metabolism
10.
Nat Med ; 28(4): 752-765, 2022 04.
Article in English | MEDLINE | ID: mdl-35411077

ABSTRACT

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Subject(s)
Brain Neoplasms , Melanoma , Brain Neoplasms/secondary , Cranial Irradiation , Humans , Melanoma/radiotherapy
11.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35174975

ABSTRACT

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Mice , Neoplasm Recurrence, Local , Proteomics
12.
Neuropsychol Rehabil ; 32(9): 2294-2318, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34139944

ABSTRACT

Social isolation can be a consequence of acquired brain injury (ABI). Few studies have examined the relationship between social isolation and mental health after ABI. In this cross-sectional and case-control study, we compared 51 ABI survivors and 51 matched healthy controls on measures of social isolation (network size, social support and loneliness) mental health and mental health problems. We explored the relationship between structural, functional and subjective components of social isolation and examined whether they were associated with mental health outcomes. No group differences were found on size of the network and perceived social support. The ABI group exhibited marginally higher levels of loneliness. The ABI group presented higher levels of depression, lower levels of quality of life and emotional wellbeing. In both groups, perception of social support was inversely related to subjective experience of loneliness. The relationship between network size and loneliness was only significant in the ABI group. Only loneliness significantly predicted quality of life, emotional wellbeing, depression and anxiety in people with brain injury. The relationship between social isolation variables in ABI is discussed, as well as the theoretical and clinical implications of focusing on loneliness to improve mental health after brain injury.


Subject(s)
Brain Injuries , Loneliness , Humans , Loneliness/psychology , Mental Health , Quality of Life , Cross-Sectional Studies , Case-Control Studies , Social Isolation/psychology , Social Support , Brain Injuries/complications , Brain Injuries/psychology
13.
Nat Cancer ; 2(12): 1387-1405, 2021 12.
Article in English | MEDLINE | ID: mdl-34957415

ABSTRACT

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.


Subject(s)
Extracellular Vesicles , Melanoma , Animals , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Lymphangiogenesis/physiology , Lymphatic Metastasis , Melanoma/metabolism , Mice , Nerve Tissue Proteins , Receptors, Nerve Growth Factor/genetics , Tumor Microenvironment
14.
Blood Cancer J ; 11(8): 146, 2021 08 14.
Article in English | MEDLINE | ID: mdl-34392311

ABSTRACT

CAR-T-cell therapy against MM currently shows promising results, but usually with serious toxicities. CAR-NK cells may exert less toxicity when redirected against resistant myeloma cells. CARs can be designed through the use of receptors, such as NKG2D, which recognizes a wide range of ligands to provide broad target specificity. Here, we test this approach by analyzing the antitumor activity of activated and expanded NK cells (NKAE) and CD45RA- T cells from MM patients that were engineered to express an NKG2D-based CAR. NKAE cells were cultured with irradiated Clone9.mbIL21 cells. Then, cells were transduced with an NKG2D-4-1BB-CD3z-CAR. CAR-NKAE cells exhibited no evidence of genetic abnormalities. Although memory T cells were more stably transduced, CAR-NKAE cells exhibited greater in vitro cytotoxicity against MM cells, while showing minimal activity against healthy cells. In vivo, CAR-NKAE cells mediated highly efficient abrogation of MM growth, and 25% of the treated mice remained disease free. Overall, these results demonstrate that it is feasible to modify autologous NKAE cells from MM patients to safely express a NKG2D-CAR. Additionally, autologous CAR-NKAE cells display enhanced antimyeloma activity demonstrating that they could be an effective strategy against MM supporting the development of NKG2D-CAR-NK-cell therapy for MM.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Multiple Myeloma/therapy , NK Cell Lectin-Like Receptor Subfamily K/therapeutic use , Animals , Cell Line, Tumor , Humans , Male , Mice, Inbred NOD
15.
Cancers (Basel) ; 13(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205829

ABSTRACT

Metastatic clear-cell renal cell carcinoma (m-ccRCC) is characterized by increased hypoxia-induced factor (HIF)-2α and vascular endothelial growth factor receptor (VEGFR)-dependent angiogenesis through loss of function of the von Hippel-Lindau protein. VEGFR tyrosine kinase inhibitors (VEGFR-TKIs) are a cornerstone of m-ccRCC treatment, and new treatments targeting HIF-2α are currently under investigation. However, predictive biomarkers for these treatments are lacking. In this retrospective cohort study including 109 patients treated with VEGFR-targeted therapies as first-line treatment, we aimed to study the possible predictive function of microRNAs (miRNAs) targeting HIF-2α, VEGFR1 and VEGFR2. We selected miRNAs inversely correlated with HIF-2α, VEGFR1 and/or VEGFR2 expression and with predicted target sites in the respective genes and subsequently studied their impact on therapeutic outcomes. We identified four miRNAs (miR-34c-5p, miR-221-3p, miR-222-3p and miR-3529-3p) inversely correlated with VEGFR1 and/or VEGFR2 expression and associated with tumor shrinkage and progression-free survival (PFS) upon treatment with VEGFR-TKIs, highlighting the potential predictive value of these miRNAs. Moreover, we identified three miRNAs (miR-185-5p, miR-223-3p and miR-3529-3p) inversely correlated with HIF-2α expression and associated with tumor shrinkage and PFS upon treatment with VEGFR-TKIs. These three miRNAs can have a predictive value not only upon treatment with VEGFR-TKIs but possibly also upon treatment with the upcoming HIF-2α inhibitor belzutifan.

16.
PeerJ Comput Sci ; 7: e593, 2021.
Article in English | MEDLINE | ID: mdl-34239974

ABSTRACT

Compi is an application framework to develop end-user, pipeline-based applications with a primary emphasis on: (i) user interface generation, by automatically generating a command-line interface based on the pipeline specific parameter definitions; (ii) application packaging, with compi-dk, which is a version-control-friendly tool to package the pipeline application and its dependencies into a Docker image; and (iii) application distribution provided through a public repository of Compi pipelines, named Compi Hub, which allows users to discover, browse and reuse them easily. By addressing these three aspects, Compi goes beyond traditional workflow engines, having been specially designed for researchers who want to take advantage of common workflow engine features (such as automatic job scheduling or logging, among others) while keeping the simplicity and readability of shell scripts without the need to learn a new programming language. Here we discuss the design of various pipelines developed with Compi to describe its main functionalities, as well as to highlight the similarities and differences with similar tools that are available. An open-source distribution under the Apache 2.0 License is available from GitHub (available at https://github.com/sing-group/compi). Documentation and installers are available from https://www.sing-group.org/compi. A specific repository for Compi pipelines is available from Compi Hub (available at https://www.sing-group.org/compihub.

17.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34237032

ABSTRACT

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.


Subject(s)
Centrioles/genetics , Chromosomal Instability , Microcephaly/genetics , Neural Stem Cells/pathology , Animals , Brain/cytology , Brain/pathology , CRISPR-Cas Systems/genetics , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrioles/pathology , Disease Models, Animal , Embryo, Mammalian , Female , Humans , Male , Mice , Mice, Knockout , Microcephaly/pathology , Microscopy, Electron, Transmission , Molecular Imaging , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/ultrastructure , Primary Cell Culture , Time-Lapse Imaging , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
Cell Rep ; 36(2): 109372, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260908

ABSTRACT

B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.


Subject(s)
B-Lymphocytes/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Lymphoma/immunology , Lymphoma/pathology , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , Animals , Female , Gene Knock-In Techniques , Heterozygote , Immunity, Humoral , Longevity , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Mutant Strains , Mutation/genetics
19.
Arq Bras Cir Dig ; 34(1): e1563, 2021.
Article in English, Portuguese | MEDLINE | ID: mdl-34008707

ABSTRACT

BACKGROUND: : The II Brazilian Consensus on Gastric Cancer of the Brazilian Gastric Cancer Association BGCA (Part 1) was recently published. On this occasion, countless specialists working in the treatment of this disease expressed their opinion in the face of the statements presented. AIM: : To present the BGCA Guidelines (Part 2) regarding indications for surgical treatment, operative techniques, extension of resection and multimodal treatment. METHODS: To formulate these guidelines, the authors carried out an extensive and current review regarding each declaration present in the II Consensus, using the Medline/PubMed, Cochrane Library and SciELO databases initially with the following descriptors: gastric cancer, gastrectomy, lymphadenectomy, multimodal treatment. In addition, each statement was classified according to the level of evidence and degree of recommendation. RESULTS: : Of the 43 statements present in this study, 11 (25,6%) were classified with level of evidence A, 20 (46,5%) B and 12 (27,9%) C. Regarding the degree of recommendation, 18 (41,9%) statements obtained grade of recommendation 1, 14 (32,6%) 2a, 10 (23,3%) 2b e one (2,3%) 3. CONCLUSION: : The guidelines complement of the guidelines presented here allows surgeons and oncologists who work to combat gastric cancer to offer the best possible treatment, according to the local conditions available.


Subject(s)
Stomach Neoplasms , Brazil , Consensus , Gastrectomy , Humans , Lymph Node Excision , Stomach Neoplasms/surgery
20.
Cancers (Basel) ; 13(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800656

ABSTRACT

Bone metastasis in clear-cell renal cell carcinoma (ccRCC) leads to substantial morbidity through skeletal related adverse events and implicates worse clinical outcomes. MicroRNAs (miRNA) are small non-protein coding RNA molecules with important regulatory functions in cancer development and metastasis. In this retrospective analysis we present dysregulated miRNA in ccRCC, which are associated with bone metastasis. In particular, miR-23a-3p, miR-27a-3p, miR-20a-5p, and miR-335-3p specifically correlated with the earlier appearance of bone metastasis, compared to metastasis in other organs. In contrast, miR-30b-3p and miR-139-3p were correlated with less occurrence of bone metastasis. These miRNAs are potential biomarkers and attractive targets for miRNA inhibitors or mimics, which could lead to novel therapeutic possibilities for bone targeted treatment in metastatic ccRCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...